THE IBM 8270/8272 EMBEDDED RMON FEATURE

Document Number TR 29.2256

Switch Technology Development
International Business Machines Corporation
Research Triangle Park, North Carolina

i The 8270/8272 Embedded RMON Feature

ABSTRACT

The purpose of this technical report is to provide the reader with an understanding of the
Embedded Remote Monitoring (RMON) Feature of the IBM 8270 LAN Switch and IBM 8272
LAN Switch. This feature provides RMON support for Token Ring as defined by RFC1757
and RFC1513. Following a brief overview of RFC1757 and RFC1513, the capabilities and use
of each supported RMON group is discussed in terms of its actual implementation in the
8270/8272. The specific SNMP steps needed to create, modify and delete a group entry are
included in the discussion of each supported RMON group.

IBM is a registered trademark of International Business Machines Corporation.

ITIRC KEYWORDS
. 8270

8272

RMON

SNMP

LAN SWITCH

ABSTRACT i

iv. The 8270/8272 Embedded RMON Feature

CONTENTS

ABSTRACT . iii
ITIRC KEYWORDS iii
THE IBM 8270/8272 EMBEDDED RMON FEATURE 1
INTRODUCTION . . 1
The Token Ring Statistics Group 2
The History Control Group 2
The Token Ring History Group 2
The Alarm Group 2
The Host Group 2
The HosStTOpN Group 2
The Matrix Group 3
The Filter Group 3
The Packet Capture Group 3
The Event Group 3
The Token Ring Ring Station Group 3
The Token Ring Ring Station Order Group 3
The Token Ring Ring Station Config Group 3
The Token Ring Source Routing Group 4
THE RMON MIBs (RFC1757 and RFC1513) 5
The tokenRingMLStatsTable 6
The tokenRingPStatsTable 8
The historyControlTable 10
The tokenRingMLHistoryTable 14
The tokenRingPHistoryTable 17
The alarmTable 19
The eventTable 27
The logTable 32
The risingAlarm Trap 33
The fallingAlarm Trap 34
ENABLING AND DISABLING THE EMBEDDED RMON FEATURE 35
The ibm8272TsEmbeddedRmonStatus Object 35

Contents v

vi The 8270/8272 Embedded RMON Feature

THE IBM 8270/8272 EMBEDDED RMON FEATURE

INTRODUCTION

Remote Monitoring (RMON) support for Token Ring is defined by RFC1757 and RFC1513.
RFC1757 (the RMON MIB) contains the base RMON groups while RFC1513 (the Token Ring
RMON MIB) contains the Token Ring specific tables and extensions to RFC1757. The
Embedded RMON Feature of the IBM 8270 LAN Switch and 8272 LAN Switch will provide
support for the statistics, history control, history, alarm and event groups. Figure 1 lists the
groups contained in RFC1757 and RFC1513; and indicates which groups will be supported by
the Embedded RMON Feature of the 8270 and 8272.

Figure 1. Token Ring RMON Groups

Group Supported Standard
token ring statistics **Y eg** RFC1513
history control **Y eg** RFC1757
token ring history **Yegr* RFC1513
alarm **Yegr* RFC1757
host No RFC1757
hostTopN No RFC1757
matrix No RFC1757
filter No RFC1757
packet capture No RFC1757
event **Yest* RFC1757
token ring station No RFC1513
token ring station order No RFC1513
token ring station config No RFC1513
token ring source routing No RFC1513

The remainder of this section provides an overview of each of the groups as described in
RFC1757 and RFC1513.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 1

The Token Ring Statistics Group

The Token Ring statistics group contain current utilization and error statistics. The statistics
are broken down into two groups, the Token Ring MAC-Layer Statistics Group and the Token
Ring Promiscuous Statistics Group. The Token Ring MAC-Layer Statistics Group collects
information from MAC Layer, including error reports for the ring and ring utilization of the MAC
Layer. The Token Ring Promiscuous Statistics Group collects utilization statistics from data
packets collected promiscuously.

The History Control Group

The history control group controls the periodic statistical sampling of data from various types
of networks. This group consists of the historyControlTable.

The Token Ring History Group

The Token Ring History Group contain historical utilization and error statistics. The statistics
are broken down into two groups, the Token Ring MAC-Layer History Group and the Token
Ring Promiscuous History Group. The Token Ring MAC-Layer History Group collects informa-
tion from MAC Layer, including error reports for the ring and ring utilization of the MAC Layer.
The Token Ring Promiscuous History Group collects utilization statistics from data packets
collected promiscuously.

The Alarm Group

The alarm group periodically takes statistical samples from variables in the probe and com-
pares them to previously configured thresholds. If the monitored variable crosses a threshold,
an event is generated. A hysteresis mechanism is implemented to limit the generation of
alarms. This group consists of the alarmTable and requires the implementation of the event

group.

The Host Group

The host group contains statistics associated with each host discovered on the network. This
group discovers hosts on the network by keeping a list of source and destination MAC
Addresses seen in good packets promiscuously received from the network. This group con-
sists of the hostControlTable, the hostTable, and the hostTimeTable.

The HostTopN Group

The hostTopN group is used to prepare reports that describe the hosts that top a list ordered
by one of their statistics. The available statistics are samples of one of their base statistics
over an interval specified by the management station. Thus, these statistics are rate based.
The management station also selects how many such hosts are reported. This group consists

2 The 8270/8272 Embedded RMON Feature

of the hostTopNControlTable and the hostTopNTable, and requires the implementation of the
host group.

The Matrix Group

The matrix group stores statistics for conversations between sets of two addresses. As the
device detects a new conversation, it creates a new entry in its tables. This group consists of
the matrixControlTable, the matrixSDTable and the matrixDSTable.

The Filter Group

The filter group allows packets to be matched by a filter equation. These matched packets
form a data stream that may be captured or may generate events. This group consists of the
filterTable and the channelTable.

The Packet Capture Group

The Packet Capture group allows packets to be captured after they flow through a channel.
This group consists of the bufferControlTable and the captureBufferTable, and requires the
implementation of the filter group.

The Event Group

The event group controls the generation and notification of events from this device. This
group consists of the eventTable and the logTable.

The Token Ring Ring Station Group

The Token Ring Ring Station Group contains statistics and status information associated with
each Token Ring station on the local ring. In addition, this group provides status information
for each ring being monitored.

The Token Ring Ring Station Order Group

The Token Ring Ring Station Order Group provides the order of the stations on monitored
rings.

The Token Ring Ring Station Config Group

The Token Ring Ring Station Config Group manages token ring stations through active
means. Any station on a monitored ring may be removed or have configuration information
downloaded from it.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 3

The Token Ring Source Routing Group

The Token Ring Source Routing Group contains utilization statistics derived from source
routing information optionally present in token ring packets.

4 The 8270/8272 Embedded RMON Feature

THE RMON MIBS (RFC1757 AND RFC1513)

The following table provides an overview of the support which will be provided by the 8270
and 8272 Embedded RMON Feature.

Figure 2. Supported RMON Groups, Tables and Traps

Group Table Anchor Point Note
statistics rmon 1
tokenRingMLStatsTable statistics 2 Current TR MAC statistics.
tokenRingPStatsTable statistics 3 Current TR promiscuous statistics.
history rmon 2
historyControlTable history 1 Controls collection of historical TR
statistics.
tokenRingMLHistoryTable history 3 Historical TR MAC statistics.
tokenRingPHistoryTable history 4 Historical TR promiscuous statis-
tics.
alarm rmon 3
alarmTable alarm 1 Controls monitoring of TR

counters. Actions for rising and
failing conditions are specified in
the eventTable.

event rmon 9
eventTable event 1 Controls sending traps and cre-
ating logTable entries for rising
and falling alarm conditions.
logTable event 2 Log Entries for rising and falling
alarm conditions.
traps
risingAlarm rmon ENTER- Rising Alarm Trap for monitored
PRISE 1 TR counters.
fallingAlarm rmon ENTER- Falling Alarm Trap for monitored
PRISE 2 TR counters.

THE I1BM 8270/8272 EMBEDDED RMON FEATURE

The tokenRingMLStatsTable

The tokenRingMLStatsTable contains the current values of MAC statistics for Token Ring
ports. There will be one entry in the table for each 8270/8272 Token Ring port. The table is
supported with read-only access. SET is not supported as the data is always present and
cannot be created or deleted. Collection of data for this table has no adverse effect on the
performance of the switch.

The following two tables illustrate the name, data types, access and short description of the
objects in tokenRingMLStatsTable.

Figure 3. tokenRingMLStatsTable (1 of 2)

Object Type Access Description
tokenRingMLStatsIndex INTEGER RO Table Index. Range 1 to
65535.
tokenRingMLStatsDataSource OID *RW ifindex of the port. Set of
this object is not supported.
tokenRingMLStatsDropEvents Counter RO Packets dropped by the
probe.
tokenRingMLStatsMacOctets Counter RO Not Implemented. Always
zero.
tokenRingStatsMacPkts Counter RO Not Implemented. Always
zero.
tokenRingMLStatsRingPurgeEvents Counter RO Number of ring purge events

detected by the port.

tokenRingMLStatsRingPurgePkts Counter RO Ring purge MAC packets
detected by the port.

tokenRingMLStatsBeaconEvents Counter RO Number of beacon events
detected by the port.

tokenRingMLStatsBeaconTime TimeTicks RO Length of time in beacon
state by the port.

tokenRingMLStatsBeaconPkts Counter RO Beacon MAC packets
detected by the port.

tokenRingMLStatsClaimTokenEvents Counter RO Number of claim tokens
events detected by the port.

tokenRingMLStatsClaimTokenPkts Counter RO Claim token MAC packets
detected by the port.

6 The 8270/8272 Embedded RMON Feature

Figure 4. tokenRingMLStatsTable (2 of 2)

Object Type Access Description
tokenRingMLStatsNAUNChanges Counter RO Number of NAUN changes
detected by the port.
tokenRingMLStatsLineErrors Counter RO Number of line errors
detected by the port.
tokenRingMLStatsInternalErrors Counter RO Number of internal errors
detected by the port.
tokenRingMLStatsBurstErrors Counter RO Number of burst errors
detected by the port.
tokenRingMLStatsACErrors Counter RO Number of address copy
errors detected by the port.
tokenRingMLStatsAbortErrors Counter RO Number of abort errors
detected by the port.
tokenRingMLStatsLostFrameErrors Counter RO Number of lost frame errors
detected by the port.
tokenRingMLStatsCongestionErrors Counter RO Number of congestion errors
detected by the port.
tokenRingMLStatsFrameCopiedErrors Counter RO Number of frame copy errors
detected by the port.
tokenRingMLStatsFrequencyErrors Counter RO Number of frequency errors
detected by the port.
tokenRingMLStatsTokenErrors Counter RO Number of token errors
detected by the port.
tokenRingMLStatsSoftErrorReports Counter RO Number of soft errors
detected by the port.
tokenRingMLStatsRingPollEvents Counter RO Number of ring poll errors
detected by the port.
tokenRingMLStatsOwner String *RW The port is always owned by
the switch. Set of this object
is not supported.
tokenRingMLStatsStatus INTEGER *RW The value of this object is

always 1 (valid entry). Set of
this object is not supported.

THE I1BM 8270/8272 EMBEDDED RMON FEATURE

The tokenRingPStatsTable

The tokenRingPStatsTable contains the current values of promiscuous statistics for Token
Ring ports. There will be one entry in the table for each 8270/8272 Token Ring port. The
table is supported with read-only access. SET is not supported as the data is always present
and cannot be created or deleted. Collection of data for this table has no adverse effect on
the performance of the switch.

The following two tables illustrate the name, data types, access and short description of the
objects in tokenRingPStatsTable.

Figure 5. tokenRingPStatsTable (1 of 2)

Object Type Access Description
tokenRingPStatsIndex INTEGER RO Table Index. Range 1 to
65535.
tokenRingPStatsDataSource oID *RW ifindex of the port. Set of
this object is not supported.
tokenRingPStatsDropEvents Counter RO Packets dropped by the
probe.
tokenRingPStatsDataOctets Counter RO Octets received by the port.
tokenRingPStatsDataPkts Counter RO Packets received by the port.
tokenRingPStatsDataBroadcastPkts Counter RO Broadcast packets received
by the port.
tokenRingPStatsDataMulticastPkts Counter RO Multicast packets received by
the port.

8 The 8270/8272 Embedded RMON Feature

Figure 6. tokenRingPStatsTable (1 of 2)

tokenRingPStatsDataPkts18to630Octets Counter RO Not Implemented. Always
zero.

tokenRingPStatsDataPkts64t01270ctets Counter RO Not Implemented. Always
zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts128to2550ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts256t05110ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts512t010230ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts1024t020470ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts2048t040950ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts4096t081910ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPkts8192t0180000ctets zero.

tokenRingPStats- Counter RO Not Implemented. Always

DataPktsGreaterThan180000ctets Zero.

tokenRingPStatsOwner String *RW The port is always owned by

the switch. Set of this object
is not supported.

tokenRingPStatsStatus INTEGER *RW The value of this object is
always 1 (valid entry). Set of

this object is not supported.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 9

The historyControlTable

The historyControlTable contains the current values which control the collection of Token Ring
port history statistics, i.e. entries in the tokenRingMLHistoryTable and tokenRingPHistoryTable.
When the 8270/8272 boots, this table will contain zero entries. Previously created entries are
NOT saved between boots. Entries may be created by the customer until the switch's
maximum entries for the table have been reached or the switch's pool of tokenRingHistory
records has been exhausted in response to historyControlBucketsRequested requests. Cre-
ation of a valid entry will cause the switch to create tokenRingMLHistoryTable and
tokenRingPHistoryTable entries for the specified port at the specified time interval. Deletion of
an entry will cause the switch to delete all associated tokenRingMLHistoryTable and
tokenRingPHistoryTable entries and return the historyControlBucketsGranted to the switch's
pool of tokenRingHistory records.

The following table illustrates the name, data types, access and short description of the
objects in historyControlTable.

Figure 7. historyControlTable

Object Type Access Description

historyControlindex INTEGER RO Table Index. Range 1 to 65535.
historyControlDataSource OID RW ifindex of the port.
historyControlBucketsRequested INTEGER RW Requested maximum number of

history records to collect for the
port. Range 1 to 65535.

historyControlBucketsGranted INTEGER RwW Actual maximum number of history
records which will be collected for
the port. Range 1 to 65535.

historyControlinterval INTEGER RW The interval time size in seconds.
Range 1 to 3600.

historyControlOwner INTEGER RW Customer specified history control
owner.
historyControlStatus INTEGER RwW The current status of the entry.

1=valid. 2=create request (create
an entry). 3=under creation.
4=invalid (delete the entry).

10 The 8270/8272 Embedded RMON Feature

Creating a historyControlTable Entry: An entry in the historyControlTable may be
created by issuing an SNMP SET of the historyControlStatus object with a non-existent index
and a value of 2 ("create request").

Example Parameters

IP Address...9.67.219.31 <------ Switch IP Address
Community....private <---------- read-write Community Name
Object....... historyControlStatus

Index........ 1 <cmmmmmeeeee non-existent historyControlIndex
Value........ 2 <emmmmmmmmmme e create request

Optionally the SET PDU may also contain customer specified values for the following read-
write objects:

e historyControlDataSource

¢ historyControlBucketsRequested

¢ historyControlBucketsinterval

e historyControlBucketsOwner

Upon successful completion of the SET, a new entry will be created in the historyControlTable

with a historyControlStatus of "under creation” (3) and switch defaults for any unspecified
optional parameters.

Modifying a historyControlTable Entry: While an entry has a historyControlStatus of
"under creation" (3), the following read-write objects may be modified:

¢ historyControlDataSource

historyControlBucketsRequested

historyControlBucketsinterval

historyControlBucketsOwner

historyControlStatus

THE IBM 8270/8272 EMBEDDED RMON FEATURE 11

After the historyControlStatus of an entry has been SET to "valid" (1) by the manager, the
switch will begin creating tokenRingMLHistoryTable and tokenRingPHistoryTable entries for
the port. While an entry has a historyControlStatus of "valid" (1), the read-write objects of this
table have the following modification properties:

¢ May NOT Be Modified
1. historyControlDataSource
2. historyControlBucketsinterval
¢ May Be Modified
1. historyControlBucketsRequested
2. historyControlBucketsOwner

3. historyControlStatus

12 The 8270/8272 Embedded RMON Feature

Deleting a historyControlTable Entry: An entry in the historyControlTable may be
deleted by issuing an SNMP SET of the historyControlStatus object with a valid index and a
value of 4 ("invalid").

Example Parameters

IP Address...9.67.219.31 <------ Switch IP Address
Community....private <---------- read-write Community Name
Object....... historyControlStatus

Index........ 1 <cmmmmmeeeeee existent historyControlIndex
Value........ b <emme - invalid

Deletion of an entry will cause the switch to delete all associated tokenRingMLHistoryTable
and tokenRingPHistoryTable entries; and return the historyControlBucketsGranted to the
switch's pool of tokenRingHistory records.

Deriving the Switch's historyControlTable Limits: The switch has a limit on the
number of historyControlTable entries which may be created and the number of
tokenRingMLHistoryTable/tokenRingPHistoryTable entries which may be created. An object
containing the value of these limits is not provided by RFC1757 but these limits can be
derived.

To derive the switch's limit on the number of historyControlTable entries which may be
created, simply create historyControlTable entries until the switch rejects an additional "create
request". The number of entries which were created prior to the rejection is the switch's limit
on number of historyControlTable entries.

To derive the switch limit on the number of tokenRingMLHistoryTable/tokenRingPHistoryTable
entries which may created, simply create one historyControlTable entry and modified the value
of the entry's historyControlBucketsRequested object to 65535. After completion of the SET,
the entry's historyControlBucketsGranted will contain the switch's limit on the number of
tokenRingMLHistoryTable/tokenRingPHistoryTable entries which may be created.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 13

historyControlTable OIDs: The following object identifiers (OIDs) may be helpful in
natively manipulating the historyControlTable where "n" is the historyControlindex.

Figure 8. historyControlTable OIDs

Object OID

historyControlindex 1.3.6.1.2.1.16.2.1.1.1.n
historyControlDataSource 1.3.6.1.2.1.16.2.1.1.2.n
historyControlBucketsRequested 1.3.6.1.2.1.16.2.1.1.3.n
historyControlBucketsGranted 1.3.6.1.2.1.16.2.1.1.4.n
historyControlBucketsinterval 1.3.6.1.2.1.16.2.1.1.5.n
historyControlBucketsOwner 1.3.6.1.2.1.16.2.1.1.6.n
historyControlBucketsStatus 1.3.6.1.2.1.16.2.1.1.6.n

The OID for the ifindex object is 1.3.6.1.2.2.1.1.n where "n" is the value of the port's ifindex.
This is used when specifying the historyControlDataSource.

The tokenRingMLHistoryTable

The tokenRingMLHistoryTable contains the historical values of MAC statistics for Token Ring
ports. The creation of tokenRingMLHistoryTable entries is controlled by the entries in
historyControlTable. For each "valid" entry in the historyControlTable, the switch will create
corresponding entries in the tokenRingMLHistoryTable for the specified port at the specified
interval. When the number of entries for a given port reaches the value (limit) contained in the
historyControlBucketsGranted, the switch will delete the oldest entry for the port before adding
a new entry for the port. The table is thus in effect a table of sliding windows, one for each
historyControlTable entry.

After an tokenRingMLHistoryTable entry is created it remains accessible until one of the fol-
lowing conditions occurs:

1. The switch is reset (boots).

2. The entry is aged out by a new entry.

3. The corresponding historyControlTable entry is deleted.

14 The 8270/8272 Embedded RMON Feature

The following two tables illustrate the name, data types, access and short description of the
objects in tokenRingMLHistoryTable.

Figure 9. tokenRingMLHistoryTable (1 of 2)

Object Type Access Note
tokenRingMLHistorylndex INTEGER RO Table Index One.
tokenRingMLHistorySamplelndex INTEGER RO Table Index Two.
tokenRingMLHistoryIntervalStart TimeTicks RO Inverval start time in hundredths of
a second.
tokenRingMLHistoryDropEvents Counter RO Packets dropped by the probe
during this interval.
tokenRingMLHistoryMacOctets Counter RO Not Implemented. Always zero.
tokenRingMacPkts Counter RO Not Implemented. Always zero.
tokenRingMLHistoryRingPurgeEvents Counter RO Number of ring purge events
detected by the port during this
interval.
tokenRingMLHistoryRingPurgePkts Counter RO Ring purge MAC packets detected

by the port during this interval.

tokenRingMLHistoryBeaconEvents Counter RO Number of beacon events detected
by the port during this interval.

tokenRingMLHistoryBeaconTime TimeTicks RO Length of time in beacon state by
the port during this interval.

tokenRingMLHistoryBeaconPkts Counter RO Beacon MAC packets detected by
the port during this interval.

tokenRingMLHistoryClaimTokenEvents Counter RO Number of claim tokens events
detected by the port during this
interval.

tokenRingMLHistoryClaimTokenPkts Counter RO Claim token MAC packets detected
by the port during this interval.

tokenRingMLHistoryNAUNChanges Counter RO Number of NAUN changes
detected by the port during this
interval.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 15

Figure 10. tokenRingMLHistoryTable (2 of 2)

Object Type Access Note
tokenRingMLHistoryLineErrors Counter RO Number of line errors detected by
the port during this interval.
tokenRingMLHistoryInternalErrors Counter RO Number of internal errors detected
by the port during this interval.
tokenRingMLHistoryBurstErrors Counter RO Number of burst errors detected by
the port during this interval.
tokenRingMLACHistoryErrors Counter RO Number of address copy errors
detected by the port during this
interval.
tokenRingMLHistoryAbortErrors Counter RO Number of abort errors detected by
the port during this interval.
tokenRingMLHistoryLostFrameErrors Counter RO Number of lost frame errors
detected by the port during this
interval.
tokenRingMLHistoryCongestionErrors Counter RO Number of congestion errors
detected by the port during this
interval.
tokenRingMLHistoryFrameCopiedErrors ~ Counter RO Number of frame copy errors
detected by the port during this
interval.
tokenRingMLHistoryFrequencyErrors Counter RO Number of frequency errors
detected by the port during this
interval.
tokenRingMLHistoryTokenErrors Counter RO Number of token errors detected
by the port during this interval.
tokenRingMLHistorySoftErrorReports Counter RO Number of soft errors detected by
the port during this interval.
tokenRingMLHistoryRingPollEvents Counter RO Number of ring poll errors detected
by the port during this interval.
tokenRingMLHistoryActiveStations Counter RO Number of active stations detected

16 The 8270/8272 Embedded RMON Feature

by the port during this interval.

The tokenRingPHistoryTable

The tokenRingPHistoryTable contains the historical values of promiscusous statistics for
Token Ring ports. The creation of tokenRingPHistoryTable entries is controlled by the entries
in historyControlTable. For each "valid" entry in the historyControlTable, the switch will create
corresponding entries in the tokenRingPHistoryTable for the specified port at the specified
interval. When the number of entries for a given port reaches the value (limit) contained in the
historyControlBucketsGranted, the switch will delete the oldest entry for the port before adding
a new entry for the port. The table is thus in effect a table of sliding windows, one for each
historyControlTable entry.

After an tokenRingPHistoryTable entry is created it remains accessible until one of the fol-
lowing conditions occurs:

1. The switch is reset (boots).

2. The entry is aged out by a new entry.

3. The corresponding historyControlTable entry is deleted.

The following two tables illustrate the name, data types, access and short description of the
objects in tokenRingPHistoryTable.

Figure 11. tokenRingPHistoryTable (1 of 2)

Object Type Access Note
tokenRingPHistorylndex INTEGER RO Table Index One.
tokenRingPHistorySamplelndex INTEGER RO Table Index Two.
tokenRingMLHistoryIntervalStart TimeTicks RO Inverval start time in hundredths of
a second.
tokenRingPHistoryDropEvents Counter RO Packets dropped by the probe
during this interval.
tokenRingPHistoryDataOctets Counter RO Octets received by the port during
this interval.
tokenRingPHistoryDataPkts Counter RO Packets received by the port

during this interval.

tokenRingPHistoryDataBroadcastPkts Counter RO Broadcast packets received by the
port during this interval.

tokenRingPHistoryDataMulticastPkts ~ Counter RO Multicast packets received by the
port during this interval.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 17

Figure 12. tokenRingPHistoryTable (2 of 2)

Object Type Access Note

tokenRingPHistory- Counter RO Not Implemented. Always zero.
DataPkts18to630ctets

tokenRingPHistory- Counter RO Not Implemented. Always zero.

DataPkts64t01270ctets

tokenRingPHistory- Counter RO
DataPkts128t02550ctets

Not Implemented.

Always zero.

tokenRingPHistory- Counter RO
DataPkts256t05110Octets

Not Implemented.

Always zero.

tokenRingPHistory- Counter RO
DataPkts512t010230ctets

Not Implemented.

Always zero.

tokenRingPDataPkts1024t02047Octets Counter RO

Not Implemented.

Always zero.

tokenRingPHistory- Counter RO
DataPkts2048t040950ctets

Not Implemented.

Always zero.

tokenRingPHistory- Counter RO
DataPkts4096t081910ctets

Not Implemented.

Always zero.

tokenRingPHistory- Counter RO
DataPkts8192t0180000ctets

Not Implemented.

Always zero.

tokenRingPHistory- Counter RO
DataPktsGreaterThan180000ctets

18 The 8270/8272 Embedded RMON Feature

Not Implemented.

Always zero.

The alarmTable

The alarmTable contains the current values which control the monitoring of a specific Token
Ring port counter. When the 8270/8272 boots, this table will contain zero entries. Previously
created entries are NOT saved between boots. Entries may be created by the customer until
the switch's maximum entries for the table have been reached. Creation of a valid entry will
cause the switch to perform actions (send traps and/or create logTable entries) as specified by
the eventTable entry for a rising and falling condition. Deletion of an entry will cause the
switch to stop performing actions as specified by the eventTable entry for a rising and falling
condition.

The following table illustrates the name, data types, access and short description of the
objects in alarmTable.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 19

Figure 13. alarmTable

Object

Type

Access

Description

alarmindex

INTEGER

RO

Table Index One. Range 1 to
65535.

alarminterval

INTEGER

RW

Alarm interval in seconds. Range
1to 2,147,483,647.

alarmVariable

OID

RW

Object ID identifying the counter
and port to monitor.

alarmSampleType

INTEGER

RwW

Sample type. l=absolute value.
2=delta value.

alarmValue

INTEGER

RO

Value of the port counter during
the last interval.

alarmStartUpAlarm

INTEGER

RwW

Action to take when the alarm
becomes valid. 1=check for rising
alarm condition. 2=check for
falling alarm condition. 3=check
for rising and falling alarm condi-
tions.

alarmRisingThreshold

INTEGER

RW

Rising alarm threshold for the port
counter. Range 1 to
2,147,483,647.

alarmFallingThreshold

INTEGER

RwW

Falling alarm threshold for the port
counter. Range 1 to
2,147,483,647.

alarmRisingEventindex

INTEGER

RW

Rising alarm eventTable index
which contains log and trap
options. Range 0 to 65535.

alarmFallingEventindex

INTEGER

RW

Falling alarm eventTable index
which contains log and trap
options. Range 0 to 65535.

alarmOwner

String

RwW

Customer specified alarm owner
name.

alarmStatus

20 The 8270/8272 Embedded RMON Feature

INTEGER

RwW

The current status of the entry.
1=valid. 2=create request (create
an entry). 3=under creation.
4=invalid (delete the entry).

The following three tables illustrate the variables (port counters) which may be monitored

where "n" is the ifindex of the port.

Figure 14. alarm Variables (1 of 3)

Variable

MIB

OID

iflnOctets

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.10.n

iflnUcastPkts

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.11.n

iflnNUcastPkts

RFC1573 - ifTable

1.3.6.1.21.2.21.12.n

iflnDiscards

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.13.n

iflnErrors

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.14.n

iflnUnknownProtos

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.15.n

ifOutOctets

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.16.n

ifOutUcastPkts

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.17.n

ifOutNUcastPkts

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.18.n

ifOutDiscards

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.19.n

ifOutErrors

RFC1573 - ifTable

1.3.6.1.2.1.2.2.1.20.n

iflnMulticastPkts

RFC1573 - ifXTable

1.3.6.1.2.1.31.1.1.1.2.n

iflnBroadcastPkts

RFC1573 - ifXTable

1.3.6.1.2.1.31.1.1.1.3.n

ifOutMulticastPkts

RFC1573 - ifXTable

1.3.6.1.2.1.31.1.1.1.4.n

ifOutBroadcastPkts

RFC1573 - ifXTable

THE IBM 8270/8272 EMBEDDED RMON FEATURE 21

1.3.6.1.2.1.31.1.1.1.5.n

Figure 15. alarm Variables (2 of 2)

Variable MIB OID

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.3.n
DropEvents tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.6.n
RingPurgeEvents tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.7.n
RingPurgePkts tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.8.n
BeaconEvents tokenRingMLStatsTable

tokenRingML Stats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.10.n
BeaconPkts tokenRingMLStatsTable

tokenRingML Stats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.11.n
ClaimTokenEvents tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.12.n

ClaimTokenPkts tokenRingMLStatsTable
tokenRingML Stats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.13.n
NAUNChanges tokenRingMLStatsTable
tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.14.n
LineErrors tokenRingMLStatsTable
tokenRingML Stats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.15.n

InternalErrors

tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.16.n
BurstErrors tokenRingMLStatsTable
tokenRingML Stats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.17.n
ACErrors tokenRingMLStatsTable
tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.18.n
AbortErrors tokenRingMLStatsTable
tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.19.n
LostFrameErrors tokenRingMLStatsTable
tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.20.n
CongestionErrors tokenRingMLStatsTable
tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.21.n
FrameCopiedErrors tokenRingMLStatsTable

22 The 8270/8272 Embedded RMON Feature

Figure 16. alarm Variables (3 of 3)

Variable MIB oID

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.22.n
FrequencyErrors tokenRingMLStatsTable

tokenRingML Stats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.23.n
TokenErrors tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.24.n
SoftErrorReports tokenRingMLStatsTable

tokenRingMLStats- RFC1513 - 1.3.6.1.2.1.16.1.2.1.25.n
RingPollEvents tokenRingMLStatsTable

tokenRingPStats- RFC1513 - 1.3.6.1.2.1.16.1.3.1.3.n

DropEvents tokenRingPStatsTable
tokenRingP Stats- RFC1513 - 1.3.6.1.2.1.16.1.3.1.4.n
DataOctets tokenRingPStatsTable
tokenRingPStats- RFC1513 - 1.3.6.1.2.1.16.1.3.1.5.n

DataPkts tokenRingPStatsTable
tokenRingPStats- RFC1513 - 1.3.6.1.2.1.16.1.3.1.6.n
DataBroadcastPkts tokenRingPStatsTable
tokenRingPStats- RFC1513 - 1.3.6.1.2.1.16.1.3.1.7.n

DataMulticastPkts

tokenRingPStatsTable

Creating an alarmTable Entry:

Before creating an alarmTable entry, the customer should

first create eventTable entries for rising and/or falling conditions which are to be monitored by

the alarmEntry. The eventTable entries must exist to SET the alarmRisingEventindex and
alarmFallingEventindex. See "Creating an eventTable Entry".

An entry in the alarmTable may be created by issuing an SNMP SET of the alarmStatus
object with a non-existent index and a value of 2 ("create request").

Example Parameters

IP Address...9.67.219.31 <------ Switch IP Address
Community....private <---------- read-write Community Name
Object....... alarmStatus

Index........ 1 < non-existent alarmIndex
Value........ 2 Smmmmmmmmmmmm - create request

THE IBM 8270/8272 EMBEDDED RMON FEATURE

23

Optionally the SET PDU may also contain customer specified values for the following read-
write objects:

e alarminterval

e alarmVariable

¢ alarmSampleType

¢ alarmStartUpAlarm

e alarmRisingThreshold

¢ alarmFallingThreshold

¢ alarmRisingEventindex

e alarmFallingEventindex

e alarmOwner

Upon successful completion of the SET, a new entry will be created in the alarmTable with an

alarmStatus of "under creation" (3) and switch defaults for any unspecified optional parame-
ters.

24 The 8270/8272 Embedded RMON Feature

Modifying an alarmTable Entry:

While an entry has an alarmStatus of "under creation”

(3), the following read-write objects may be modified:

alarminterval
alarmVariable
alarmSampleType
alarmStartUpAlarm
alarmRisingThreshold
alarmFallingThreshold
alarmRisingEventindex

alarmFallingEventindex

alarmOwner

alarmStatus

After the alarmStatus of an entry has been SET to "valid" (1) by the manager, the switch will
begin monitoring the port counter and performing actions as specified by rising eventTable
entry and falling eventTable entry. While an entry has an alarmStatus of "valid” (1), the read-
write objects of this table have the following modification properties:

¢ May NOT Be Modified

1.

o N o o b~ W N

alarminterval

. alarmVariable

. alarmSampleType

. alarmStartUpAlarm

. alarmRisingThreshold
. alarmFallingThreshold
. alarmRisingEventindex

. alarmFallingEventindex

e May Be Modified

1.
2.

alarmOwner

alarmStatus

THE IBM 8270/8272 EMBEDDED RMON FEATURE 25

Deleting an alarmTable Entry: An entry in the alarmTable may be deleted by issuing an
SNMP SET of the alarmStatus object with a valid index and a value of 4 ("invalid").

Example Parameters

IP Address...9.67.219.31 <------ Switch IP Address
Community....private <---------- read-write Community Name
Object....... alarmStatus

Index........ 1 <cmmmmmeeeee existent alarmIndex
Value........ 4 <o invalid

Deletion of an entry will cause the switch to stop monitoring the port counter.

Deriving the Switch's alarmTable Limits: The switch has a limit on the number of
alarmTable entries which may be created. An object containing the value of this limit is not
provided by RFC1757 but this limit can be derived.

To derive the switch's limit on the number of alarmTable entries which may be created, simply
create alarmTable entries until the switch rejects an additional "create request”. The number
of entries which were created prior to the rejection is the switch's limit on the number of
alarmTable entries.

26 The 8270/8272 Embedded RMON Feature

alarmTable OIDs:

The following object identifiers (OIDs) may be helpful in natively manipu-

lating the alarmTable where "n" is the alarmindex.

Figure 17. alarmTable OIDs

Object

OID

alarmindex

1.3.6.1.2.1.16.3.1.1.1.n

alarminterval

1.3.6.1.2.1.16.3.1.1.2.n

alarmVariable

1.3.6.1.2.1.16.3.1.1.3.n

iflndex

1.3.6.1.21.2.21.1.n

alarmSampleType

1.3.6.1.2.1.16.3.1.1.4.n

alarmValue

1.3.6.1.2.1.16.3.1.1.5.n

alarmStartUpAlarm

1.3.6.1.2.1.16.3.1.1.6.n

alarmRisingThreshold

1.3.6.1.2.1.16.3.1.1.7.n

alarmFallingThreshold

1.3.6.1.2.1.16.3.1.1.8.n

alarmRisingEventindex

1.3.6.1.2.1.16.3.1.1.9.n

alarmFallingEventindex

1.3.6.1.2.1.16.3.1.1.10.n

alarmOwner

1.3.6.1.2.1.16.3.1.1.11.n

alarmStatus

The eventTable

1.3.6.1.2.1.16.3.1.1.12.n

The eventTable contains the current values which control the action(s) taken where a port
counter is detected to be in a rising or falling condition as specified by an entry in alarmTable.
When the 8270/8272 boots, this table will contain zero entries. Previously created entries are
NOT save between boots. Entries may created by the customer until the switch's maximum
entries for the table have been reached. Creation of a valid entry in itself will NOT cause the
switch to perform any action(s). A valid alarmTable entry must be created which contains the
index of a valid eventTable entry before the switch will perform any actions for rising or falling
conditions. Deletion of an entry will cause the switch to stop performing actions related to the
entry which are currently active and delete all associated logEntries.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 27

The following table illustrates the name, data types, access and short description of the

objects in the eventTable.

Figure 18. eventTable

Object Type Access Description

eventindex INTEGER RO Table Index One. Range 1 to
65535.

eventDescription String RW Customer specified event
description.

eventType INTEGER RW Action to perform. 1=None.
2=create a logTable entry. 3=send
a trap. 4=create a logTable entry
and send a trap.

eventCommunity String RW Community name to send in a
trap. If not specified, the trap will
not be sent.

eventLastTimeSent TimeTicks RO Time in hundredths of a second of
when the event last occurred.

eventOwner String RwW Customer specified event owner
name.

eventStatus INTEGER RwW The current status of the entry.

28 The 8270/8272 Embedded RMON Feature

1=valid. 2=create request (create
an entry). 3=under creation.
4=invalid (delete the entry).

Creating an eventTable Entry: An entry in the eventTable may be created by issuing an
SNMP SET of the eventStatus object with a non-existent index and a value of 2 ("create
request”).

Example Parameters

IP Address...9.67.219.31 <------ Switch IP Address
Community....private <---------- read-write Community Name
Object....... eventStatus

Index........ 1 <mmmmmmmee - non-existent eventIndex
Value........ 2 <emmmmmmmmmmeme- create request

Optionally the SET PDU may also contain customer specified values for the following read-
write objects:

eventDescription
eventType
eventSampleType
eventCommunity

eventOwner

Upon successful completion of the SET, a new entry will be created in the eventTable with an
eventStatus of "under creation" (3) and switch defaults for any unspecified optional parame-
ters.

Modifying an eventTable Entry: While an entry has an eventStatus of "valid" (1) or
"under creation" (3), the following read-write objects may be modified:

eventDescription
eventType
eventSampleType
eventCommunity
eventOwner

eventStatus

THE IBM 8270/8272 EMBEDDED RMON FEATURE 29

Deleting an eventTable Entry: An entry in the eventTable may be deleted by issuing an
SNMP SET of the eventStatus object with a valid index and a value of 4 ("invalid").

Example Parameters

IP Address...9.67.219.31 <------ Switch IP Address
Community....private <---------- read-write Community Name
Object....... eventStatus

Index........ 1 <cmmmmmeeee existent eventIndex
Value........ 4 <o invalid

Deletion of an entry will cause the switch to stop performing actions related to the entry which
are currently active and delete all associated logEntries.

Deriving the Switch's eventTable Limits: The switch has a limit on the number of
eventTable entries which may be created. An object containing the value of this limit is not
provided by RFC1757 but this limit can be derived.

To derive the switch's limit on the number of eventTable entries which may be created, simply

create eventTable entries until the switch rejects an additional "create request”. The number
of entries which were created prior to the rejection is the switch's limit on the number of
eventTable entries.

30 The 8270/8272 Embedded RMON Feature

eventTable OIDs: The following object identifiers (OIDs) may be helpful in natively manipu-
lating the eventTable where "n" is the eventindex.

Figure 19. eventTable OIDs

Object OID

eventindex 1.3.6.1.2.1.16.9.1.1.1.n
eventDescription 1.3.6.1.2.1.16.9.1.1.2.n
eventType 1.3.6.1.2.1.16.9.1.1.3.n
eventCommunity 1.3.6.1.2.1.16.9.1.1.4.n
eventLastTimeSent 1.3.6.1.2.1.16.9.1.1.5.n
eventOwner 1.3.6.1.2.1.16.9.1.1.6.n
eventStatus 1.3.6.1.2.1.16.9.1.1.7.n

THE IBM 8270/8272 EMBEDDED RMON FEATURE 31

The logTable

The logTable contains the information regarding rising and falling alarm conditions. The cre-
ation of logTable entries is controlled by the entries in the eventTable which are in turn associ-
ated with alarmTable entries. For each set of "valid" alarmTable and eventTable entries with
an eventType of "log" (2) or "trap and log" (4), the switch will create corresponding entries in
the logTable for the specified rising and/or falling port counter conditions. When the number
of entries for a given port rising or falling condition reaches the switch's limit for a given
eventTable entry, the switch will delete the oldest entry for the event before adding a new
entry for the event. The table is thus in effect a table of sliding windows, one for each
eventTable entry.

After a logTable entry is created it remains accessible until one of the following conditions
ocCurs:

1. The switch is reset (boots).

2. The entry is aged out by a new entry.

3. The corresponding eventTable entry is deleted.

The following table illustrates the name, data types, access and short description of the
objects in logTable.

Figure 20. logTable

Object Type Access Note

logEventindex INTEGER RO Table Index One. eventTable
index for the log entry. Range 1 to
65535.

logindex INTEGER RO Table Index Two. log index for the

log entry. Range 1 to 65535.

logTime TimeTicks RO Time in hundredths of a second of
when the event was logged.

logDescription String RO Customer specified log description
copied from the event description.

32 The 8270/8272 Embedded RMON Feature

The risingAlarm Trap

A risingAlarm trap contains information regarding rising alarm conditions. The sending of
risingAlarm traps is controlled by the entries in the eventTable which are in turn associated
with alarmTable entries. For each set of "valid" alarmTable and eventTable entries with an
eventType of "trap" (3) or "trap and log" (4), the switch will send a risingAlarm trap for the
specified rising port counter conditions to all of the switch's trap receivers. If the community
name specified in the eventTable entry is NULL, the trap is NOT sent.

The following table illustrates the name, data types and short description of the objects in the
risingAlarm Trap.

Figure 21. risingAlarm Trap

Object Type Note

alarmindex INTEGER Index of the alarmTable entry
related to this trap.

alarmVariable OID Object ID identifying the port
counter.

alarmSampleType INTEGER Sample type. 1=absolute value.
2=delta value.

alarmValue INTEGER Value of the port counter when the
rising alarm condition was
detected.

alarmRisingThreshold INTEGER Rising alarm threshold for the port

counter. Range 1 to
2,147,483,647.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 33

The fallingAlarm Trap

A fallingAlarm trap contains information regarding falling alarm conditions. The sending of
fallingAlarm traps is controlled by the entries in the eventTable which are in turn associated
with alarmTable entries. For each set of "valid" alarmTable and eventTable entries with an
eventType of "trap" (3) or "trap and log" (4), the switch will send a fallingAlarm trap for the
specified rising port counter conditions to all of the switch's trap receivers. If the community
name specified in the eventTable entry is NULL, the trap is NOT sent.

The following table illustrates the name, data types and short description of the objects in the
fallingAlarm Trap.

Figure 22. fallingAlarm Trap

Object Type Note

alarmindex INTEGER Index of the alarmTable entry
related to this trap.

alarmVariable OID Object ID identifying the port
counter.

alarmSampleType INTEGER Sample type. 1=absolute value.
2=delta value.

alarmValue INTEGER Value of the port counter when the
falling alarm condition was
detected.

alarmFallingThreshold INTEGER Falling alarm threshold for the port

counter. Range 1 to
2,147,483,647.

34 The 8270/8272 Embedded RMON Feature

ENABLING AND DISABLING THE EMBEDDED RMON FEATURE

The ibm8272TsEmbeddedRmonStatus Object

An ibm8272TsEmbeddedRmonStatus object has been added to the 8270/8272 Private MIB.
This is a simple (single instance) object which when read reflects the current status of the
Embedded RMON Feature (up or down); and when SET will either enable or disable the
Embedded RMON Feature. When disabled, none of the tables or objects in the RMON MIB
(RFC1757) and the Token Ring RMON MIB (RFC1513) will be accessible. As a side effect of
disabling the Embedded RMON Feature, all internal storage related to any and all RFC1757
and RFC1513 tables and objects is freed; and is thus a quick and easy way of deleting all
entries in all RMON tables. When the object is SET to up/enabled, the result depends on the
current status of the Embedded RMON Feature. If the current status is up/enabled, nothing is
changed or altered. If the current status is down/disabled, the Embedded RMON Feature is
re-initialized.

THE IBM 8270/8272 EMBEDDED RMON FEATURE 35

